Friday, January 20, 2017

Pembuktian Teorema Mengenai Bilangan Prima (Bagian 1)



Assalamu 'alaikum,,
banyak sekali teorema yang berhubungan dengan bilangan prima, insya Allah di blog ini akan dibuktikan beberapa teorema tersebut. pembuktian teorema bilangan prima diawali dengan sebuah teorema yaitu :
Teorema :

Misalkan n = a + b , dengan a,b ϵ Z, dan p adalah bilangan prima sedemikian sehingga p ǀ n dan p ǀ a , maka p ǀ b.

Bukti :

Karena n =a+b, dengan a,b ϵ Z, dan p adalah bilangan prima sedemikian sehingga p ǀ n dan p ǀ a, maka terdapat bilangan bulat x dan y sehingga berakibat n = px dan a = py.

Karena n = a + b , berarti

b = n – a
b = px – py
b = p (x-y)
b = pz

dengan z juga bilangan bulat. Jadi terlihat bahwa p ǀ b.

1 comment: